Written in 2009.

What Is the Answer to Zeno’s Paradox? (2014), by Brian Palmer.

www.slate.com ...

Imagine, for a moment, that Achilles decides to

Everything else is otherwise the same – he takes half a second to reach point 2, another quarter of a second to reach point 3, and so on, throughout the sequence.

Many people readily think in these terms, as they contemplate Achilles moving through Zeno’s points. They treat each pointwise movement as a

Of course, we could simply think in the normal way, with Achilles walking steadily towards the doorway, but many gravitate to this alternative mode of thinking, especially when contemplating the problem in slow motion.

Assuming that Achilles can hop, step or shuffle sufficiently fast, the problem seems unchanged, since the essential thing is that he moves from point to point in the required time, and not

Unfortunately, however, these natural thoughts are disastrous, because in redrawing the problem this way, we unwittingly reduce it to the case of the man and the pie and open ourselves up to the awaiting bodily disjoint!

Thus, after exactly one second, Achilles is at the doorway. But which foot does he have forward? And why? Or if he is hopping through the points, is he up in the air or down on the ground at the instant he crosses the doorway?

As we know, no answers are forced upon us. All answers are permitted. So let’s suppose he has his right foot forward when he reaches the doorway. It will then be disjoint from its prior states of motion, in the way previously explained. And so we must imagine Achilles “popping out” of Zeno’s sequence after exactly one second in some random bodily state disconnected from his previous ones, and being perplexed over how that can be.

In contrast, if we imagine Achilles walking towards the doorway in the

We may illustrate the difference with Achilles’s right leg. Whether he steps through the points, or just walks normally, his leg will repeatedly assume a range of different positions. Consider these three, and the obvious ones in between:

The following diagrams illustrate how his leg will repeatedly cycle through these positions, depending on his gait:

If he

So the Achilles hop, step or shuffle is not as innocuous as it first looks! On the contrary, it is quite disastrous to redraw Zeno’s problem in that way. If Achilles just walks in the normal way, the dreaded bodily disjoint will not arise.

We need not worry about whether Achilles can get through the doorway with one of the alternate gaits just mentioned. It certainly isn’t

So we have removed yet another barrier between Achilles and the doorway. The vaguely perceived difficulty with the endlessness of Zeno’s sequence proved to be quite genuine but it can also be addressed. The problem doesn’t really arise, after all, but we can see why one might unwittingly think that it does, especially if one contemplates the problem in slow motion!

There are likely to be hidden depths in Zeno’s problem but I hope that the above has yielded some idea of how to tackle such a fiendish problem. Everything we have said applies just as well to Achilles and the tortoise, so we might usefully sum everything up in those terms.

Achilles & the tortoise

The surprise exam

Newcomb’s problem

Newcomb’s problem (sassy version)

Seeing and being

Logic test!

Philosophers say the strangest things

Favourite puzzles

Books on consciousness

Philosophy videos

Phinteresting

Philosopher biographies

Philosopher birthdays

Draft

barang 2009-2017